
Phase transition in the multimode two- and three-level Dicke model (Green's function method)

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 2273

(http://iopscience.iop.org/0305-4470/12/11/035)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:15

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/11
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 11, 1979. Printed in Great Britain 

Phase transition in the multimode two- and three-level 
Dicke model (Green’s function method) 

C C Sung? and C M BowdenS 
t Department of Physics, University of Alabama in Huntsville, Alabama 35807, USA 
‘F High Energy Laser and Research Laboratory, US Army Missile Research and Develop- 
ment Command, Redstone Arsenal, Alabama 35809, USA 

Received 17 July 1978, in final form 8 February 1979 

Abstract. By using the thermodynamic Green’s function method, we study the phase 
transition of a collection of two- as well as three-level atoms interacting with the elec- 
tromagnetic field and contained within a volume much smaller than the smallest resonance 
wavelength (Dicke model). We show for the case of three-level atoms the existence of two 
critical temperatures where a second-order phase transition takes place. The upper critical 
temperature is determined by the largest of the three coupling constants in the three-level 
model, whereas the lower critical temperature is a function of the remaining two coupling 
constants. We also show that for a collection of two- as well as three-level atoms, the critical 
temperature depends upon the number of atoms contained within A: (Ar is a resonance 
wavelength) rather than the density as has previously been suggested. Also, using the 
Green’s function method, we show the formal equivalence of the Dicke model in ther- 
modynamic equilibrium with the BCS model of superconductivity. 

1. Introduction 

The Dicke Hamiltonian (Dicke 1954), which models the interaction of a collection of N 
two-level atoms with the radiation field, has found wide and extensive use in quantum 
optics, including the detailed description of super-radiance and superfluorescence 
(Bonifacio et a1 1971a, b, Bonifacio and Lugiato 1975, McGillivray and Feld 1976). 
The thermodynamic properties of the two-level Dicke model Hamiltonian have also 
been studied for the restriction to one mode, or finite many modes, of the radiation field 
and a second-order phase transition is found (Hepp and Lieb 1973a, b). 

Since the work of Hepp and Lieb (1973a) in which they obtain exact closed-form 
results, others have introduced more tractable calculational methods for studying the 
equilibrium thermodynamic properties of the Dicke model (Wang and Hioe 1973, 
Hepp and Lieb 1973b, Lee 1976, Gilmore and Bowden 1976a, Mihalache 1977). These 
methods have been used to study the equilibrium thermodynamics of various 
ramifications of the Dicke Hamiltonian (Gilmore and Bowden 1976a, b and references 
contained therein, Provost et a1 1976, Bowden and Sung 1978). Of particular relation 
to the work presented here, Mihalache (1 977) used thermodynamic Green’s functions 
to show the effect of an external field on the phase transition in the two-level Dicke 
model in only one photon mode of the radiation field. 

In this paper, we use the thermodynamic Green’s function method to discuss the 
thermodynamic properties of the spatially independent Dicke model of two- and 
three-level atoms, including all modes of the radiation field. Besides obtaining some 
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2274 C C Sung and C M Bowden 

interesting results for phase transitions, we show why this time-dependent approach is 
essential for the multimode model where the field frequency may be off the atomic 
resonance. The Green's function approach leads naturally to the explicit formal 
equivalence between these models and the BCS model for superconductivity (Fetter 
and Walecka 1971, Gorkov 1958). 

Others have considered the multimode model (finite many modes), by extension of 
the one-mode model? (Hepp and Lieb 1973b, Wang and Hioe 1973, Hioe 1973, 
Gilmore and Bowden 1976a, b). In order for these calculations to be tractable one has 
to assume a point model, namely that the wavelength A of all modes must satisfy the 
condition that A >> V,, where V, is the atomic volume. This assumption is crucial for all 
the quoted calculations where the spatial dependence of the atomic operators is 
neglected. 

A serious consequence of imposing the point model assumption improperly 
concerns the importance of the A2 term (Rzazewski et a1 1975). The claim was made 
(Rzaiewski et a1 1975) that inclusion of the A2 term in the Dicke Hamiltonian, 
considering the requirements imposed by the Thomas-Reiche-Kuhn (TRK) sum rule 
(Merzbacher 1963), removes the possibility of the phase transition. This conclusion 
was arrived at by assuming a poin model: A ?  (the resonance wavelength) >> V,, so that 
the spatial dependence of all the terms in A2 can be neglected. The method of Wang 
and Hioe was used to calculate the conditions for the existence of the phase transition, 
and this requires the taking of the thermodynamic limit, i.e. N/ V = const. as N, V + 00, 

where N is the total number of atoms and V is the quantisation volume for the 
electromagnetic field. This leads to an inconsistency from the very beginning, since the 
point model requires that A:  >> V,, but in the thermodynamic limit which they implicitly 
assume, V, = V, and this requires that A: >> V, which is not reasonable. 

It is perhaps worth mentioning here that recently Knight er a1 (1978) have argued 
that the' gauge-invariant Hamiltonian for a collection of bound electrons in the 
one-mode approximation does not support a phase transition. The fact is that they also 
ignore the spatial dependence of the electromagnetic field (their equation (36)) which 
presents the same dilemma as that cited above. In fact, if they retain the point model 
approximation for the atoms, keeping N constant, and take the quantisation volume V 
for the field to infinity, the contribution from the A' term vanishes and the Hamiltonian 
is no longer positive definite. 

We shall show in 0 3 that the condition for the existence of a phase transition for the 
two-level Dicke Hamiltonian in the point model approximation is 

where wr is the frequency for the radiation field, d is the matrix element for the 
transition dipole moment, and 

p = N/A: 

is the number of atoms contained within a cubic resonance wavelength. 

1973) in replacing PO by p :  
The condition (1.1) differs from the previous work (Rzazewski et a1 1975, Hioe 

Po = N /  V. (1.3) 

t It is to be noted that the Dicke Hamiltonian in one mode with spatial dependence is unitarily equivalent to 
the point model Hamiltonian in the rotation wave approximation and without the A' term (Hepp and Lieb 
1973a). 
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This difference is caused by our consideration of the assumption that 

Vg<<A3< v (1.4) 

v,= V<<A3 (1.5) 

whereas 

is implicitly used throughout the works cited above. The failure to distinguish the 
difference between V, and V in the Dicke model leads to an overestimation of the 
contribution of A*, which is eel/ V. We will show explicitly later (Sung and Bowden 
1979) why the A* term is not important if equation (1.4) is consistently taken into 
account. 

We use the thermodynamic Green’s function (Zubarev 1960) to treat the Dicke 
model for two-level and three-level atoms. In the next section we derive the effective 
atomic interaction which provides the mechanism for the phase transition. It is 
observed that this is identical, in the products of different atomic operators, with the 
form for the retarded dipole-dipole interaction which is responsible for collective 
spontaneous relaxation from an initial state of complete inversion (Bonifacio et a1 
1971a, b, Bonifacio and Lugiato 1975, Narducci and Bowden’ 1976). This result is a 
consequence of the explicit time behaviour of the atomic operators in the Green’s 
function method and does not appear explicitly in previous methods for calculating the 
phase transition (Hepp and Lieb 1973a, b, Wang and Hioe 1973, Hioe 1973, Gilmore 
and Bowden 1976a, b), which inherently impose stationary conditions at ther- 
modynamic equilibrium. This form of the interaction term exhibits a kind of pair 
correlation among the atoms via their mutual radiation field which is formally 
equivalent to the interaction in BCS theory (Fetter and Walecka 1971). This is not 
surprising, due to the well known formal similarity of this problem with the BCS model. 
The main difference in approach between this work and others is that we consider the 
full mode dependence in the radiation field, and the explicit time dependence of the 
expectation values is not suppressed (this is important, for instance, when the field 
frequency is not in resonance with the atomic energy levels). 

In 0 3, we obtain the results for the condition for the existence of the phase transition 
for two-level atoms in the point model ( l . l ) ,  which differs from previous work by the 
definition (1.2). 

The results for the effective atomic interaction and conditions for the existence of 
phase transitions for three-level atoms are obtained in 9 4. It is shown that there are two 
critical temperatures, the greater of which is determined by the largest coupling 
constant, whereas the lower critical temperature is determined by solving a set of 
simultaneous equations involving the smaller coupling constants. The free energy and 
conditions for the phase transitions are derived. 

The last section is used to summarise the results of previous sections and to discuss 
their implications further. 

2. The effective atomic interaction 

The Hamiltonian for two-level atoms in the presence of an electromagnetic field is given 
by Ho+H’:  
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where a:(&) and Ci (C,) are the creation (annihilation) operators of a photon and an 
atomic level occupation, with unperturbed energies Wk and en respectively. The 
coupling constant g k  = - i (~uk /2  v ) ” ~ E ~ .  D, where and D are the polarisation vector 
and the matrix element for the dipole moment between levels 1 and 2 (Loudon 1973). 
We also use units such that A = c = 1. The equation of motion for a k  is 

(2.3) i(a/at)aL +wkaL = -g f  1 Ci,iCl,i 
i 

and the solution is given by 

where we have used C: ( t )  = C: ( t ’ )  exp[iez(t - t’)]. We obtain, by substitution of 
equation (2.4) into equation (2.2) and 

1 = V I  d3k/(2.rr)3 
k 

the result 

where 

The terms i = j can be considered as now included in Ho with the effect of leading to 
frequency renormalisation. 

The atomic interaction between two atoms i and j ,  as expressed in equation (2.5), is 
very similar to the interaction of a pair of localised spins caused by the virtual exchange 
of conducting electrons (RKKY interaction: Kittel 1963). It is also formally the same 
term which appears as the retarded dipole-dipole interaction in the analysis of the 
dynamical evolution of super-radiant emission of radiation (Bonifacio and Lugiato 
1975, Narducci and Bowden 1976). However, equation (2.6) cannot be evaluated 
quantitatively because of the assumption in the Dicke model Vi” < A  = 21r/k which 
restricts the domain of the integration. Furthermore, since the factor exp(ik . r i )  is 
neglected in equation (2.1), the spatial dependence of the atomic interaction cannot be 
discussed. In order to derive a correct expression for the atomic interaction, one has to 
start from the exact Hamiltonian for the radiation-atoms system, and the Dicke 
Hamiltonian is not adequate. Equation (2.5) serves to demonstrate in the spirit of the 
Dicke model how it originates from a system of atomic interaction induced by the 
virtual exchange of photons. 

In previous works, equation (2.4) appears in the form 
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where ( ) denotes the ensemble average. The comparison of equations (2.7) and the 
results of equation (2.4), which is the exact equation of motion, indicates the effect of 
the choice of the variational states in the calculations (Hepp and Lieb 1973a, b, 
Rzazewski et a1 1975, Wang and Hioe 1973, Gilmore and Bowden 1976a, b). 

We will make two more comments on the difference between equations (2.7) and 
(2.4). First, we can also obtain equation (2.7) directly from equation (2.4) by taking the 
ensemble average of a: and C:C1. Then the previous results can be obtained by 
replacing a: in equation (2.2) by the (a : )  in equation (2.7). Second, in the previous 
work (Hepp and Lieb 1973b, Rzaiewski and Wodkiewicz 1976) the integral like 

d3k/ok has been taken very seriously and even the cut-off of k is discussed. We wish to 
point out here that, because of the assumption A >> V,, the integral cannot be 
calculated. For the multimode case, any realistic consideration must include the factors 
exp(ik . r i )  in equation (2.2) and obtain the spatial dependence of g in equation (2.6). 

We can, however, write g in the form 

(2.8) I g = (ND2/Al) { A,” d o  w S ( w ) / [ w  - (€2- €1) +MI +cc 

where S(o), the density of states, is introduced through I d3k/ (2d3  + d o  S(w) .  If the 
main contribution to the integral comes from w = €2 - €1, then the number in the braces 
is of the order of one. Hence, we take 

g = ND2/A ,” (2.9) 

where CC D, whose magnitude depends on the value of the integral in equation (2.8). 
In the following section, we obtain the thermodynamics of the Dicke Hamiltonian 

by using Ho+Hi,,, where Hint=H‘ in equation (2.5). This step, however, is not 
necessary in the Green’s function method; we can start from equation (2.2) and perform 
the decoupling approximation (a:C:C1) = (a:)(C:Cl) and substitute (ak) from equa- 
tion (2.7) to obtain identical results. It should be emphasised that the difference 
between this work and the previous one stems from equations (2.4)-(2.6) against 
equation (2.7). If one starts from &+Hi,,, then all the methods will give us the same 
results as those which we expect from the example provided by the BCS model (Fetter 
and Walecka 1971). 

3. Two-level atoms 

The two-time Green’s function is defined by (Zubarev 1960) 

Gn,i(t-f’) = --iv(t-t’M.Cn,i(t), cL.i(t’)l> (3.1) 

where 77 is the step function and (0) (the ensemble average) is Trexp(-#lH)O, 
H =Ho+Hi,t, 1 = Zn In)(nl and In) is defined as 

(3.2) 

where N - n and n are the numbers of atoms in the ground state level one and excited 
state level two respectively. The term in square brackets in equation (3.1) is a 
commutator since Cn (CL) is assumed to be a boson operator, but our calculations and 
the results are equally applicable to fermions. 

In) = IN - n, n) 
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(3.3) 

(3.4) 
The following calculations and approximations follow closely Gorkov’s classical 

The time-independent autocorrelation functions fil and & are defined as 
paper on superconductivity (Gorkov 1958). 

El = cc: (t)Cz(t)) 

R = <c: (t)C,(t)). 

We also introduce the Fourier transform 
m 

G,(t-t’)= I exp[-i(t-t’)w]G,(w)do 

F,(t - t’) = I exp[-i(t - t ‘ )w]F , (w)  dw. 

-m 

m 

-m 

The equation of motion for G1 is 

( ia/at-e1)Gl(r-t’)+g~2Fl(t-t’)  =s( t - t ’ )  (3.9) 

where the decoupling approximation 

([c:clcZ(t), c: (f’)l> = W l ( r  - t’) (3.10) 

has been used and we have also dropped the index i in all G and F, because of the lack of 
spatial dependence in the Dicke model and the equivalence of all Gi and Fi for all i. We 
do not include the terms &Gl(t - t’) in equation (3.10), since the effect is only to cause 
a shift in el and €2. 

The Fourier transform of equation (3.9) is given by 

(3.11) 

(3.12) 

and the solution of equations (3.11) and (3.12) is 

(U - F ~ ) ( w  - F2)G1= (U - ~ 2 ) / 2 ~  

(w - P l ) ( W  -P2)F1= -gP, /2*  

where F1 and F2 are defined as the roots of 

(3.13) 

(3.14) 

(3.15) 

Notice that Pl is the complex conjugate of R2 and we write E, = & = P which is taken 
to be real. We also choose el  + e2 = 0:  

C1,2  = * ( e 2 +  (3.16) 

where A’ = gzI@lz may be called the gap or order parameter and E is the unperturbed 
atomic level separation. 

-2 ,I * w 2 =  ( € 1 + € 2 ) 6 J - ( - € l € Z + g  F1F2)=0. 
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The solutions for G2 and F2 are similar to equations (3.13) and (3.14): 

(U - Z ~ ) ( O  -Z2)G2= (U -~1 ) /27~ .  

(U - C1)(O - G)F2 = -g&/2a. 

(3.17) 

(3.18) 

In order to bring our calculation from quantum statistical mechanics to classical 
statistics, as in previous works, the density is normalised by assuming that there is one 
atom per lattice site, i.e. 

8 , + 8 2 = 1  (3.19) 

where 6, = (CiC,): 6, is related to G, by (Zubarev 1960) 
00 

6, =ilim ~ [ G , ( ~ + i ~ ) - G ~ ( ~ - i ~ ) ] / { e x p [ ( w - p ) ~ 1 - 1 } ~  dw 
8-0 I_, 

(3.20) 
=BG,(o) 

where p is the chemical potential. Equation (3.19) then becomes 

(3.21) 

In the limit of classical statistics exp(-@p) + m, we obtain 

exp(Bp) = [exp(-pd + exp(-~~2)1-'. (3.22) 

Then the order parameter A is determined by using the operator 3, defined by equation 
(3.20), on both sides of equation (3.14) and solving for F1. The resultant expression is 

R1 = g$l tanh(PE)/2Z (3.23) 

where we have used equation (3.22) for exp(Pp). There are two conditions which 
satisfy equation (3.23): 

r', = 0 (3.24) 

or 

2C/g = tanh(@Z) 

whose solution for A # 0 exists 6nly if 

(3.25) 

2 4 g  s 1 (3.26) 

which has also been derived earlier (Hepp and Lieb 1973a, b, Rzaiewski et a1 1975, 
Wang and Hioe 1973, Gilmore and Bowden 1976a, b). The critical temperature 
TC=#3,'/k is given by 

2 ~ / g  = tanh ace (3.27) 

and solutions for A in the neighbourhood of pc m d  T -* 0 can be easily obtained: 

A2 = &l -&/P)[(sinh 2 & ~ ) / 2 ~ & -  13 P +at 
A2=0  P +a: 

(3.28) 

respectively. 
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The free energy of the system is denoted by R(g) for the coupling constant g (Fetter 
and Walecka 1971): 

(3.30) 

and (Hint) = -glFI2 = -A2/g. R(g), then, can be obtained by integration by parts and 
using equation (3.25): 

(3.31) 

Notice that equation (3.31) is an even function of A2, and aR(g)/aA2 = 0 because of 
equation (3.25). As a result, the discontinuity in the thermodynamic properties at 
P = Pc is contained in AR; 

AR = (a2R/aA2)A4 P - P c .  (3.32) 

Since A4 changes from zero to (1 - P c / P ) 2  from equation (3.28), the second-order 
derivative (the specific heat) is discontinuous as P passes through Pc. 

Our results for the phase transition in the two-level Dicke model without spatial 
dependence, and in the absence of the A2 term (3.26), seem identical to the results of 
Hepp and Lieb (1973a, b), Rzaiewski et a1 (1975), Wang and Hioe (1973) and Gilmore 
and Bowden (1976a, b). The essential difference is that in equation (3.26) p appears 
instead of Po. This difference is due to the fact that we have consistently taken the ‘point 
model’ assumption, equation (1.4), into the calculation. 

R(g) - R(0) = A2/g - P-’  ln(cosh BF). 

4. Three-level atoms 

In the three-level model, the summation over n in equation (2.1) extends from 1 to 3 
and H’ becomes 

H’= 1 gka:(C:,i + c:,ic2,i -k C:, iCl , i )+HC 
k 

and a: from equation (2.4) now consists of three terms: 

(4.1) 

where (2+ 3) is a term obtained by changing the index from 2 to 3 in the previous term. 
Substitution of equation (4.2) in equation (4.1) leads to nine terms, of which three 

terms are given by 

Hi = -g12 1 c!i,ic~,jc2,jcl,j - g 2 3  c:,ic:,jc3,jc2,i -g31 c~,ic~,jc3,jcl,i* (4.3) 
i#j i # j  i # j  

The rest of the terms denoted by H ;  = H’ - H i  are not important, as shown later. The 
coupling constant gij is defined similar to g in equation (2.6), and will not be repeated 
here. We also introduce the notation 

Fn,,,,(t - t’) = -iv(t - t’)([Cn,i(t), C A ,  ( t ’ )]) .  (4.4) 
The ensemble average in G, is defined earlier (equation (3.1)), and Fn,n, is taken over all 
states 

1 (n ,  n‘ ,  n”J In, n’ ,  n”)  
nn‘n” 
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where n, n', n'' are the numbers of atoms in the levels 1, 2 and 3, respectively, and 
n + n' + n" = N. 

A similar decoupling approximation to that in equation (3.10) is to be used to write 
down the equations of motion. H i ,  however, gives rise to terms like 

C (nl ,  n2, n3I[~i,j~:,i~2,i~:,jIlnin2n3), 
n.nz.n3 

which is zero in our approximation. Consequently, unless we introduce a higher-order 
hierarchy of Green's functions, H ;  does not contribute to the equation of motion for G 
or F. We have 

The solutions are given by 

(4.8) 

(4.9) 

(4.10) 

and 

D = ~ T [ ( u  -€')(U - E ~ ) ( u  - ~ 3 ) - A h : 2 ( ~  - E ~ ) - A ; ~ ( u  - ~ i ) - A : 3 ( ~ - € 2 ) + 2 A i 2 A 2 3 A 3 1 ]  

(4.1 1) 

where Ai,= lgi,F,j12. 
All other terms F,,,, Gn can be obtained similarly. For example, 

F32 = [-g32$32(U - ~l)+g31fi3lgl2fil2l/D. (4.12) 

We follow the same kind of normalisation condition given by equation (3.19): 

C & i = 1  (4.13) 
i 

which, in the limit of classical statistics, is equivalent to 

exp(PcL) C exp(-PEi) = 1. (4.14) 

Next, we solve equations (4.8)-(4.12) and their complex conjugates simultaneously. 
It is useful to rewrite them in a more compact form by application of the operator $ 
defined in equation (3.20): 

g2ifi2i[g;,' + $Dgl I = g23fi23g3i@3i$D1' (4.15) 

gsi$3i[gil' +$D;' I g21@2ig32fi32$D-' (4.16) 

g 3 2 f i A g Z  +$D;' I g3ifi3igizfiiz@D-'. (4.17) 

Here DT' = (U - ei)/DL 
All these functions PDT' and 3D-l are explicitly given in the Appendix. Although 

the details of the functions are not important, it should be pointed out that A; for all i 
and j are the lowest order in Aij that appears in these functions, as well as &, which are 
the three roots of D. 

i 
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Next, we look for a solution of equations (4.15)-(4.17) as P becomes larger (or the 
temperature becomes smaller), and ask the question: can they be simultaneously 
satisfied at p = pc such that Aii behaves as (@ -&)a, (a # 0) when P + Pc' and Aii = 0 as 
P + K ?  

This can be seen to be impossible by taking the product of equations (4.15) and 
(4.17). The RHS of the resultant expression at P = Pc is proportional to (A13A23A1~)2 ,  

whereas the LHS is proportional to Al3AZ3Al2. This contradiction can only be resolved if 
one of the functions, say g;: + PD;', is equal to zero at p = PC. If this is indeed the case, 
then at P = P r ,  the LHS of equation (4.15) is CC(@ -Pc)3a, which is the product of A12 and 
the correction to g;: +fiD;' at P = /3:, whereas the RHS of equation ( 4 . 1 5 ) ~  
(p  - pJZa. The solution a = 0 implies that Aii cannot have a discontinuity at Pc, since for 
each p all Aii can be solved from equations (4.15)-(4.17) and they are continuous 
functions of P.  

Excluding this possibility, we can find the solutions as follows: first we examine the 
solution of three equations 

gi' = 0 (i # j #  k) (4.18) 

and find the smallest Pc (say k = 3) of the three; then the solution of equations 
(4.15)-(4.17) at P = P c  is given by 

(4.19) 

A23 = A31 = 0 (4.20) 
where the proportionality constant c is defined in equation (3.28). Since the third level 
is not involved in the phase transition, the existence of the solution, equation (4.19), is 
subject to the same condition given in equation (3.26), and the nature of this phase 
transition is similar to that given in the previous section. 

As P becomes larger, both equation (4.16) and (4.17) may admit a nonvanishing 
solution for F13 and F 2 3  at P = PS, which is the solution of the resultant equation of the 
product of equations (4.16) and (4.17): 

(g;: +h;')(g;;  + h ; ' )  = A : 2 ( P i ) ( h - 1 ) 2 .  (4.21) 

This equation is similar to the two-band BCS model (Sung and Shen 1965) and its 
solution cannot be expressed analytically in terms of gii, but the condition for the 
existence of the solution to (4.21) can be found by the observation that the LHS is greater 
than the RHS at p -Pc.  Consequently, if equation (4.21) has a solution PL where 
pc < @: < 00, then the LHS must be less than the RHS as p -B 00. This condition can be 
explicitly written down by substitution of all the functions in equation (4.21) from the 
Appendix. We obtain 

[(Cl - F 2 ) ( C 1 -  C3)g;: + ( E l  -E1)][(Fi - F2)(C1- Cg)g;: + 2Cz - €1  - €21 G A t 2  

where all quantities are given at P + 03. 

equations (4.23)-(4.27) consistently: 

(4.22) 

Next, we examine the property of the solution at P = PL, and solve for q, g' and q" in 

P =p:- 

(4.23) 

(4.24) 
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P =p6+ 
P =P6- 

(4.25) 

(4.26) 

A12 = h?2(P = 1 + qN(p - PA), P =pr+ (4.27) 

where, at p = p;-, both A32 = A31 = 0 and A& are the solutions of equation (4.15). q can 
be easily obtained by taking the ratio of equations (4.16) and (4.17): 

(4.28) 

where the la=s:- implies that all the quantities in equation (4.28) are the values at 
p =PA-. The correction to A12, q”(p -pL), is related to A13 and A23 from equation 
(4.15), where the RHS of equation (4.15) jumps from 0 to qq’(P -P;) (PD-’ ) ,  which is 
equal to q”(P -Pc)  from the LHS of equation (4.15): 

q”[g;; +h;’]Is=s; = qqf(@D-’)1,=6;. (4.29) 

Another expression relating 4‘ and 4” is obtained by expanding equation (4.21) 
around P = P6. As remarked earlier, all terms in equation (4.21) are functions of Atz, 
A;3 and A:3, and since it is exactly satisfied at @ = e:, the terms proportional to (p  -P i )  
in the Taylor series expansion at p = @;+ form another equation 

(a/afl)(g;; + h i 1 ) ( g ; ;  +FD;’)lB=O:- = (a/ap)[A:2(~D-1)2]18=8~. (4.30) 

The qualitative features of equations (4.28)-(4.30) and Aij are shown in figure 1. 

q = (g;: + & i l ) / ( g i i  +PD;’)lB=B:- 

We compute the free energy using equation (3.30): 

T 

Figure 1. Schematic plot of A, as a function of temperature for the three-level Dicke model 
for the explicit values of the parameters g12 = 2.0, gl3 = 0.8, g23 = 1.8 and = O.Z’(courtesy 
of Central Florida Regional Data Center). 
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The integrals in equation (4.31) can be computed by expressing A I 2  = gZ1FZ1 in equation 
(4.8). The sum of the three integrals in the square brackets is given by 

(4.32) 

Notice that the order of integration and the operator has been exchanged, which is 
justified since P is essentially an integration operator. However, 2 is not meaningful 
unless the function to which it applies is the ratio of two polynomials. Thus we write 

[ 3 = $P In D + const. 

3 

i = l  
D = l-j (w - G ) ,  

and use 

In(o - C )  = - Q dA/(w -AZ) ;  I’ 
then 

3 3 

i = l  i = l  
P In D = 1 P In(@ - C L )  = (I/@) 1 ln{l -exp[-@(Qi -PI]). (4.33) 

The free energy given in equation (4.31) is simply that of a system of non-interacting 
three-level atoms with normalised gi minus the interaction energy A:z /g12 ,  which is a 
well known result in the mean field approximation. Instead of proving a n / a A i ,  = 0 
explicitly as we did earlier, we would simply point out that Luttinger and Ward (1960) 
have shown that calculations based on equation (3.30) always satisfy the variational 
principle if it is consistently carried out. 

Results for the three-level Dicke model and for r-level systems have been obtained 
earlier by Gilmore (1977) using a different method. 

5. Summary 

We have applied the Green’s function method to the study of the phase transition in the 
continuous multimode Dicke model of two-level and three-level atoms. In both cases, 
we have demonstrated that the interaction explicitly in the form of atomic pair 
interactions via their mutual radiation field, equations (2.5) and (4.3), leads to the phase 
transitions: equations (3.27), (4.18) and (4.21). Our results for the conditions for the 
existence of the phase transition in the two-level case is identical in form to that 
obtained in previous works for the one-mode Dicke model (Hepp and Lieb 1973a, b, 
Wang and Hioe 1973, Gilmore and Bowden 1976a, b, c). The difference is in the 
appearance in our results of p (equation (1.2)) rather than po (equation (1.3)). This 
difference is due entirely to the consistent consideration of the assumption of the ‘point 
model’ (equation (1.4)) in our calculations. We wish to emphasise that the condition of 
the point model, when explicitly imposed in a calculation, must be taken seriously. 
Failure to do so can lead to erroneous requirements such as equation (1.5), and has led 
to strange results in the literature (Rzaiewski and Wodkiewicz 1976). 

The explicit form for the interaction, equation (2.5), for the two-level case indicates 
the formal equivalence of this model to BCS theory (Fetter and Walecka 1971), 
whereas the explicit interaction, equation (4.3), indicates the similarity of the three- 
level model to the two-band BCS model (Sung and Shen 1965). The interaction, 
equation (2.5), is also formally equivalent to the retarded dipole-dipole interaction 
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which is responsible for the collective renormalisations in the dynamic evolution of 
superfluorescence (Bonifacio and Lugiato 1975, Narducci and Bowden 1976). This 
demonstrates the formal equivalence of the interactions which lead to the phase 
transition and to collective spontaneous relaxation, and their relation to BCS theory 
(Fetter and Walecka 1971). In the case of the thermodynamic equilibrium phase 
transition for two-level atoms, the correspondence with the BCS model is direct. In 
fact, we use the very same method for calculation of the phase transition that Gorkov 
used in his classic paper to obtain the results of the BCS theory (Gorkov 1958). 

The application of the Green's function method in dealing with more complicated 
systems is demonstrated in the treatment of the Dicke model for three-level atoms in 
thermodynamic equilibrium. We have shown that there may be two second-order 
phase transitions. If so, the behaviour of the order parameters is as shown in figure 1 .  
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Appendix 

$(2?rD)-' can be evaluated by using D = ll?='=, (U -a): 

i # j # k  

In equation (A. l ) ,  we have implicitly used the classical statistical approximation 
exp(-pg) + m. Similarly, 

f i ~ ; '  = exp(Pp)(exp(-Pgl) - exp(-PZz))/(C1 - g2) + (&-€3)p(2?rD)-'. (A.2)  
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